Computation of the Pollutant Standards Index (PSI)

The PSI is based on six pollutants particulate matter (PM_{10}), fine particulate matter ($PM_{2.5}$), sulphur dioxide (SO_2), carbon monoxide (SO_3), ozone (SO_3) and nitrogen dioxide (SO_3). For each pollutant, a sub-index is calculated from a segmented linear function that transforms ambient concentrations onto a scale extending from 0 through 500.

The breakpoints used in defining each of the six pollutant sub-indices are listed as follows:

Index Category	PSI	24-hr PM _{2.5} (µg/m)	24-hr PM ₁₀ β (μg/m)	24-hr SO ₂ (μg/m ³)	8-hr CO (mg/m ³)	8-hr Ο ₃ (μg/m ³)	1-hr NO ₂ (μg/m ³) [^]
Good	0 – 50	0 – 12	0 – 50	0 – 80	0 – 5.0	0 – 118	-
Moderate	51 – 100	13 – 55	51 – 150	81 – 365	5.1 – 10.0	119 – 157	-
Unhealthy	101 – 200	56 – 150	151 – 350	366 – 800	10.1 – 17.0	158 – 235	1130
Very Unhealthy	201 – 300	151 – 250	351 – 420	801 – 1600	17.1 – 34.0	236 – 785*	1131 – 2260
Hazardous	301 – 400	251 – 350	421 – 500	1601 – 2100	34.1 – 46.0	786 – 980*	2261 – 3000
	401 – 500	351–500	501 – 600	2101 – 2620	46.1 – 57.5	981 – 1180*	3001–3750

(Note: *When 8-hour ozone concentration exceeds 785µg/m³, the PSI sub-index is calculated using the 1-hour concentration; ^Sub-index for nitrogen dioxide is reported only when the 1-hour concentration equals or exceeds 1130 µg/m³.)

Each sub-index i, is calculated by using a segmented linear function that relates pollutant concentration, X_i to sub-index value, I_i . A segmented linear function consists of straight-line segments joining discrete co-ordinates (i.e. breakpoints). For pollutant i and segment j, the co-ordinates of the jth breakpoints are represented by sub-index value $I_{i,j}$ and the concentration $X_{i,j}$ giving the ordered pair $(X_{i,j}, I_{i,j})$. If the observed concentration is X_i the corresponding sub-index value I_i is calculated using the following equation over the concentration range:

Equation 1:
$$I_i = \underline{I_{i,j+1} - I_{i,j}} \ (X_i - X_{i,j}) + I_{i,j}$$

$$X_{i,j+1} - X_{i,j}$$
 for $X_{i,j} \le X_i \le X_{i,j+1}$

where

 $X_i = Observed$ concentration for the ith pollutant

 $I_{i,j}$ = PSI value for the ith pollutant and the jth breakpoint as given in the table

 $I_{i,j+1}$ = PSI value for the i^{th} pollutant and the $(j+1)^{th}$ breakpoint as given in the table

 $X_{i,j}$ = Concentration for the i^{th} pollutant and j^{th} breakpoint as given in the table

X_{i,j+1}= Concentration for the ith pollutant and (j+1)th breakpoint as given in the table

Finally, the overall index is calculated as the maximum of sub-indices:

$$PSI = maximum (I_1, I_2, I_3, I_4, I_5, I_6)$$

Example of computation

Suppose a 24-hr PM_{2.5} concentration of 40 μ g/m³ is observed. Based on the table, the observed concentration of $X_i = 40 \ \mu$ g/m³ lies between 12 and 55 μ g/m³. Therefore, the computation is carried out for the first segment (j = 1). For this segment, $X_{1,1} = 12 \ \mu$ g/m³ and $X_{1,2} = 55 \ \mu$ g/m³ with corresponding sub-index values of $I_{1,1} = 50$ and $I_{1,2} = 100$. The computation is as follows:

$$I_{i} = \underbrace{I_{i,j+1} - I_{i,j}}_{X_{i,j+1} - X_{i,j}} (X_{i} - X_{i,j}) + I_{i,j}$$

$$= \underbrace{100 - 50}_{55 - 12} (40 - 12) + 50$$

$$= 83$$

Therefore, the PM_{2.5} sub-index is 83. If the five other pollutant sub-indices calculated in a similar manner from concentrations were $I_{2 \text{ (PM10)}} = 48$, $I_{3 \text{ (SO2)}} = 46$, $I_{4 \text{ (CO)}} = 15$, $I_{5 \text{ (O3)}} = 45$, $I_{6 \text{ (NO2)}} = -*$, then the overall index is reported as the maximum of these values as follows:

$$PSI = maximum (83, 48, 46, 15, 46, -*) = 83$$

*Note: Sub-index for nitrogen dioxide is reported only when the 1-hour concentration equals or exceeds 1130 µg/m³, which corresponds to sub-index of 200.